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Abstract. We have studied the phase transition behaviour of the random field Ising model in
the presence of a transverse (or tunnelling) field. The mean field phase diagram has been studied
in detail, and in particular the nature of the transition induced by the tunnelling (transverse) field
at zero temperature. A modified hyperscaling relation for the zero-temperature transition has
been derived using the Suzuki–Trotter formalism and a modified ‘Harris criterion’. A mapping
of the model to a randomly diluted antiferromagnetic Ising model in uniform longitudinal and
transverse field is also given.

1. Introduction

The random field Ising model (RFIM), described by the Hamiltonian

H = −
∑
ij

Jij S
z
i S

z
j −

∑
i

hiS
z
i

whereSi = ±1 are the Ising spins and thehi are independent quenched random variables
with mean zero, has been subjected to rigorous theoretical and experimental investigations
in recent years [1]. The random field acts as an order-destroying field, which effectively
reduces the transition temperatureTc of the classical Ising transition from the symmetry
broken (ferromagnetic) phase to the symmetric phase (configuration-averaged magnetization
zero) as the magnitude of the random field is of the random fieldhc

r (i.e. there exists a critical
line hr(T ) in the hr−T diagram). Forhr > hc

r , the system is always disordered at any
temperature. It has been established [2] that RFIM does not order ford 6 2, indicating
the lower critical dimensionality for the system to be two. The existence of long-range
order in the three-dimensional model, for low temperature and weak random field, has
been rigorously proved [2]. It has also been established from the mean field studies of
the classical model that whenever the distribution function of the random fieldP(h) has a
minimum at zero field (e.g. the binary distribution) one obtains a tricritical point [3] on the
critical line, so that the transition for the larger values of the random field is discontinuous,
whereas if the distribution functionP(h) decreases monotonically with the increase of the
magnitude ofh (e.g. the Gaussian distribution), the transition is always continuous [4].
One should also mention at this point that the existence of a tricritical point has not been
observed for any finite-dimensional systems. If the transition is second order, the scaling
arguments [5–7] (based on the assumptions that near the critical pointTc(hr) the random
field fluctuations dominate over the thermal fluctuations), suggest a modified hyperscaling
relation of the form 2− α = ν(d − θ), with the exponentsν andα as the correlation length
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and specific heat exponents, respectively. The new exponentθ is related to the exponents
η and η̄ (whereη and η̄ describe the decay of the connected and disconnected correlation
functions, respectively, atTc(hr)) through the relationθ = 2 + η − η̄. Obviously there
seem to exist three independent critical exponents, but recent accurate high-temperature
series expansion studies [8] imply thatθ = 2 − η, and η̄ = 2η so that the Schwartz–Soffer
inequality [9] is fulfilled as an equality. One should also mention that the static universal
critical behaviour is expected to be the same for ferromagnets in a random field and dilute
antiferromagnets in a uniform field [10].

The study of the classical Ising systems in the presence of tunable quantum fluctuations,
namely the transverse field, dates back to the early 1960s. In recent years numerous
efforts have been made to study the short-range (Edwards–Anderson type) as well as the
long-range (Sherrington–Kirkpatrick type) Ising spin glass in the presence of a transverse
(tunnelling) field, using approximate analytical and various numerical (e.g. quantum Monte
Carlo) techniques. These investigations explore the effect of quantum fluctuations (due to
quantum tunnelling) on the classically frustrated states [11].

It has been conjectured that frustration in the RFIM gives rise to a ‘many-valley’
structure in the configuration space, similar to the situation in spin glasses [1]. We therefore
study the random (longitudinal) field transverse Ising model (RFTIM), to analyse the effects
of quantum fluctuations (induced by the transverse or tunnelling field) on the transition in
the RFIM. Specifically, we consider an RFTIM system represented by the Hamiltonian

H = −
∑
ij

Jij S
z
i S

z
j −

∑
i

hiS
z
i − 0

∑
i

Sx
i . (1)

In view of the fact that the zero-temperature transverse field driven transition in the
transverse Ising models (TIM) may be equivalent to the thermal phase transition in a
higher-dimensional classical Ising system [12]), and employing the hyperscaling relation
2 − α = ν(d − θ), one can also obtain a modified hyperscaling relation for the zero-
temperature transition in an RFTIM system.

2. Mean field studies

We consider a random field Ising ferromagnet (with long-range interaction), in the presence
of a uniform transverse field

H = − J

N

∑
i 6=j

Sz
i S

z
j −

∑
i

hiS
z
i − 0

∑
i

Sx
i (2)

where Sα
i are Pauli spin operators satisfying the commutation relations [Sα

i , S
β

j ] =
iεαβγ δij S

γ

i , 0 is the strength of the tunnelling field andhi , as mentioned earlier, is the
quenched random field at each site with a probability distributionP(h), having zero mean
and nonzero variance.

Using the replica trick and the saddle-point integration (in theN → ∞ limit), following
[4], the above quantum Hamiltonian can be reduced to an effective single site Hamiltonian
given by (see appendix A)

H = −
∑

i

(2mzJ + hi)S
z
i − 0

∑
i

Sx
i (3)

where mz is the configuration-averaged longitudinal magnetization. The configuration-
averaged magnetization vector can be readily written [13] in the self-consistent form

m = tanhβ
[√

(2mzJ + h)2 + 02
] (

(2mzJ + h)ẑ + 0x̂√
(2mzJ + h)2 + 02

)
(4)
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Figure 1. The mean field phase diagram of the RFTIM in the0–h0 plane for different
temperatures. The black circle denotes the tricritical point. The inset shows the nature of
the transition below and above the tricritical point.

so that the configuration-averaged longitudinal magnetization is

mz =
[

tanhβ(
√

(2mzJ + h)2 + 02)
2mzJ + h√

(2mzJ + h)2 + 02

]
(5)

where the overhead bar denotes a configuration average over the distribution of the random
field. If one now uses a binary distribution of the random field

P(h) = 1
2δ(h − h0) + 1

2δ(h + h0) (6)

the configuration-averaged longitudinal magnetization can be written as [14]

mz = 1

2

[
tanhβ

(√
(2mzJ + h0)2 + 02

) 2mzJ + h0√
(2mzJ + h0)2 + 02

]

+1

2

[
tanhβ

(√
(2mzJ − h0)2 + 02

) 2mzJ − h0√
(2mzJ − h0)2 + 02

]
. (7)

From equation (5), one can conclude that for any symmetric distributionP(h) of the
random field,mz = 0 is always a solution of (5). For large enough temperature and
random field, this is the only solution. At low temperature and weak random field, one
finds an additional solutionmz 6= 0 (symmetry-broken phase) with lower free energy. If the
transition is continuous, one can find the transition point by expanding (5) aroundmz = 0:

mz ∼ amz − b(mz)3 − c(mz)5 − · · · . (8)
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A second-order transition is found whena = 1 as long asb > 0. If b < 0 the transition
is first order and the pointa = 1 andb = 0 characterizes a tricritical point on the phase
boundary, separating the ferromagnetic phase (mz 6= 0) from the phase withmz = 0 (but
with nonzero value of the configuration-averaged squared magnetization). In the classical
case (0 = 0) [3], one findsa = 2βJ (1 − t2); b = 1

3(2βJ )3[(1 − t2)(1 − 3t2)], where
t = tanhβh. With a binary distribution of the random field one finds the tricritical point
[3] at βJ = 3

4, tanh2(βh0) = 1
3. One can solve equation (6) (with0 = 0) numerically, to

obtain the entire phase diagram of the classical system.
In the extreme quantum limit (T = 0), the thermal fluctuations are absent and the

fluctuations induced by the random field and quantum fluctuations due to the transverse
field tend to destroy the long-range order. From (5) the configuration-averaged longitudinal
magnetization can be written as

mz =
[

2mzJ + h√
(2mzJ + h)2 + 02

]
. (9)

Expanding the magnetization in the form (8), we find for any symmetric distribution of the
random field

a =
[

2J√
h2 + 02

− 2Jh2

(h2 + 02)3/2

]
(10a)

b =
[

24J 3

(h2 + 02)3/2
− 144h2J 3

(h2 + 02)5/2
+ 120J 3h4

(h2 + 02)7/2

]
. (10b)

Specifically, if we use the binary distribution of the random field (6),

a =
 2J√

h2
0 + 02

− 2Jh2
0

(h2
0 + 02)3/2

 (11a)

b =
[

24J 3

(h2
0 + 02)3/2

− 144h2
0J

3

(h2
0 + 02)5/2

+ 120h4
0J

3

(h2
0 + 02)7/2

]
. (11b)

The tricritical point (a = 1, b = 0) is obtained at0 ∼= 1.4J , h0
∼= 0.74J . The numerically

obtained phase diagram is very similar to the phase diagram obtained in the classical case
(0 = 0), indicating that the transverse field behaves in the same manner as the temperature
to destroy the long-range order.

When both thermal and quantum fluctuations are present, we obtain the phase diagram
in the 0–h0 plane (for various temperatures below the pure system transition temperature)
by numerically solving (6), and also if the transition is second order the transition point is
given by

a =
[

4h2Jβ(1 − t2)

2(h2 + 02)
+ 2tJ

(h2 + 02)1/2
− 2th2J

(h2 + 02)3/2

]
= 1 (12)

where t = tanhβh. We find, from the numerically obtained phase diagram, that as the
temperature is increased, the phase diagram shrinks to lower values of0 and h0 and the
tricritical point on the critical line in the0–h0 plane shifts to a higher value ofh0 (i.e. the
second-order region on the phase boundary increases) and eventually if the temperature is
higher than the value at the tricritical point of the classical phase boundary, the entire phase
boundary corresponds to the continuous transition. These mean field calculations can be
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readily extended to obtain numerically the phase diagram when the random field distribution
is Gaussian with zero mean and nonzero variance

P(h) = 1√
2π12

exp

(
− h2

212

)
. (13)

One can easily see in this case that the phase transition, obtained from mean field studies,
is continuous for all values of0 and1 (width of the Gaussian distribution) because even
in the limit of temperature and transverse field both being zero, the transition driven by the
random field is continuous [3].

3. Zero temperature scaling behaviour

Let us consider a (nearest-neighbour, ferromagnetic) RFIM in the presence of a transverse
field in d dimensions

H = −J
∑
〈ij〉

Sz
i S

z
j −

∑
i

hiS
z
i − 0

∑
i

Sx
i . (14)

with the distribution of the random field being Gaussian (9). The zero-temperature transition
in a transverse Ising model on ad-dimensional lattice is equivalent to the finite-temperature
thermal phase transition in an extremely anisotropic classical Ising Hamiltonian with one
added dimension, namely the Trotter dimension. Using the Suzuki–Trotter formalism [15],
we obtain the equivalent classical Hamiltonian for the RFIM in a transverse field

Heff = −(J/M)
∑
〈ij〉

M∑
k=1

SikSjk −
∑

i

M∑
k=1

hi

M
Sik

−(1/2β) log coth(β0/M)
∑

i

∑
k

SikSj,k+1 (15)

where k indicates the Trotter direction. In the zero-temperature limit (M → ∞), the
quantum transition in the original quantum Hamiltonian (14) falls in the same universality
class with the thermal phase transition in the equivalent classical anistropic RFIM (15) with
the disorder (random field) correlated (striped) in the Trotter direction. To see whether
in this classical anisotropic higher-dimensional Ising system with striped randomness, the
fluctuations induced by the random field dominate over the thermal fluctuations, we consider
the ‘Harris criterion’ [16] for the systems with randomness correlated in one particular
(Trotter) direction. If we consider a domain having the dimension of the order of the
correlation lengthξ , the fluctuation in the critical temperature due to randomness is given
as [17]

1Tc ∼ ξ−d/2 ∼ (1T )dν/2 (16)

since the randomness is correlated in a particular (Trotter) direction and the correlation
length for the pure system diverges as(T − Tc)

−ν . So the random field is now a relevant
parameter if dν < 2, or

α + ν > 0 (17)

where bothα andν are exponents for the pure classical Ising system in(d +1) dimensions.
Since (17) is satisfied for two-dimensional (α = 0, ν = 1) as well as any higher-dimensional
pure classical Ising systems one expects that in the equivalent classical RFIM with correlated
randomness, the fluctuations induced by the random fields are relevant and dominate over
the thermal fluctuations.
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Since, in the zero-temperature transition in RFTIM, the disorder-induced fluctuations
seem to dominate, we assume that, like the singular part of free energy in the finite-
temperature transition in the classical RFIM, here also, the singular part of the ground state
energy scales asEsing ∼ ξ θ . The singular part of the ground state energy density should
then scale as

Esing/(correlation volume) = Esing/(ξ
dξτ )

whereξdξτ is the correlation volume in the quantum phase transition andξτ = ξz (z is the
dynamical exponent of the quantum system) is the correlation length in the imaginary time
direction [18]. If one assumes the ground state energy to grow with the critical interval
[(1/J )∗−(1/J )], away from the random field fixed point(1/J )∗, as [(1/J )∗−(1/J )]2−α,
and the correlation length has a divergence of the form [(1/J )∗ − 1/J)]−ν , the ground
state energy density should then scale as

Esingξ
θ−d−z ∼ [(1/J )∗ − 1/J ]ν(d+z−θ) ∼ [(1/J )∗ − 1/J ]2−α.

From the above scaling relation for the RFTIM systems, we now expect a modified
hyperscaling relation for the zero-temperature transition in the RFTIM system, of the form
2−α = (d + z − θ)ν. If one now accepts the relationθ = 2+η − η̄ along withη̄ = 2η, the
modified hyperscaling relation for the RFIM system is written as 2− α = (d + z + η − 2).

We must conclude this section with a note of caution. The above scaling form is
really a result of the application of the modified Harris criterion to a classical system (with
disorder correlated in one particular direction) which is obtained using the Suzuki–Trotter
formalism to the original quantum Hamiltonian. It essentially relies on the assumption
that in the case of classical RFIM the random field fluctuations dominate over the thermal
fluctuations, which leads to the dimensional reduction [5–7]. Recent numerical studies
of three-dimensional classical random field Ising models using both binary and Gaussian
distribution of the random field [19] and also experimental studies (see Rieger [11, 19]),
however, indicate a violation of the hyperscaling relation 2− α = ν(d − θ). These
studies support the two-exponent scaling scenario. However, the value of the exponent
β is consistent with zero, which indicates a discontinuous jump in the order parameter at
the transition temperature though no latent heat and no divergence for the specific heat is
found. Also, the possibility of a spin glass phase intermediate between the para and the
ferro phase has also been discussed [20]. In view of these theoretical uncertainties for the
classical case, the hyperscaling relation obtained here might require a closer scrutiny.

4. Mapping of the random Ising antiferromagnet in uniform longitudinal and
transverse field to the RFTIM

As mentioned earlier, Fishman and Aharony and independently Cardy [10] showed the
equivalence of the transition in the RFIM to the transitions in a dilute Ising antiferromagnet
in a steady field. Here we study the problem of equivalence in the presence of a
noncommuting transverse field and show that the random Ising antiferromagnet in a uniform
transverse and longitudinal field (RIAFTL) is expected to be in the universality class of the
Ising ferromagnet with uniform transverse field and random longitudinal field (RFTIM).
This equivalence is obtained, in a semiclassical approximation neglecting commutations,
via a decimation of one sublattice of the RIAFTL system. We illustrate the procedure by
considering first the one-dimensional model, commenting later on generalizations.

The decimation procedure is a partial trace over sites of one sublattice, e.g. that in
which the site labeli is odd. To rearrange the statistical weights of the remaining spins, the
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original (reduced) Hamiltonian

−βH =
∑

i

(−Ki,i+1S
z
i S

z
i+1 + hiS

z
i + 0Sx

i ) =
∑

i

Hi (18)

will be mapped into a new form

−βH ′ =
∑

i

(−K ′
2i,2i+2S

z
2iS

z
2i+2 + h′

2iS
z
2i + 0′Sx

2i ) =
∑

i

H ′
2i . (19)

In (1), h and0 are longitudinal and components of a uniform field, and the labeli on hi is
there only to allow for the effects of site dilution (hi is independent ofi in the case of bond
dilution). Ki,i+1 is a random antiferromagnetic exchange. The semiclassical decimation
procedure, which neglects commutations but is otherwise exact, is as follows:∏

i

[TrS2i+1[exp(Hi)]] = exp(h2iS
z
2i + 02iS

x
2i )

× TrS2i+1 exp(Sz
2i+1[h2i+1−K2i,2i+1S

z
2i −K2i+1,2i+2S

z
2i+2] + 0Sx

2i+1)

× exp(h2i+2S
z
2i+2 + 0x

2i+2) · · ·
= constant

∏
i

exp(H ′
2i ). (20)

The trace overS2i+1 produces the factor

b(Sz
2i , S

z
2i+2) = 2 cosh[(h2i+1 − K2i,2i+1S

z
2i − K2i+1,2i+2S

z
2i+2)

2 + 02]1/2. (21)

This can be written as

exp(A + BSz
2i + CSz

2i+2 + DSz
2iS

z
2i+2)

where matching of the expression for all four possible sets of values for(Sz
2i , S

z
2i+2) gives

A, B, C, D in terms of0, h2i+1, K2i,2i+1, ,K2i+1,2i+2 (see appendix B for details). We thus
arrive at the recursion relations

h′
2i = h2i + B(K2i,2i+1, K2i+1,2i+2) + C(K2i−2,2i−1, K2i−1,2i ) (22)

0′ = 0 (23)

K ′
2i,2i+2 = D(K2i,2i+1, K2i+1,2i+2). (24)

The particular casehi = 0 of this shows that the random bond Ising antiferromagnet in a
uniform transverse field maps to a random bond Ising ferromagnet in a uniform transverse
field.

The general case (hi , 0 both nonzero) maps to a random longitudinal field model, along
with uniform transverse field. This is most easily illustrated for the random bond case when
h and0 are both independent of the site labeli. For h � K, one can simplifyB(K1, K2)

(whereK1 andK2 are two neighbouring bonds) (see appendix B):

B(K1, K2) = −h

2

[
3+
�+

tanh�+ + 3−
�−

tanh�−

]
+ O(h2) (25)

with

�± = [32
± + 02]1/2 3± = K1 ± K2. (26)

For the case of bond dilution, where

Ki,i+1

{
= K with probability p

= 0 with probability(1 − p)

it is clear that3+ is always positive, while3− could be positive or negative with equal
probability for any nonzero value of the probabilityp. The result is thath′

2i is distributed
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in such a way that its mean is not zero, but it divides into two parts and the part (containing
3−) which couples to the critical fluctuations (antiferromagnetic, in the original model)
has zero mean, whereas the part with nonzero mean couples to the the ferromagnetic order
parameter.K ′, on the other hand, is a random (ferromagnetic) exchange. This indicates
that the model is expected to have the universality class of the RFTIM model at least in
the limit of small fieldh. The same procedure can be extended in higher dimensions using
cluster approximation of the type common in decimation methods [17], again with the same
conclusion. Equations (21)–(25) give the expected relationship between the parameters of
the original system and the resulting RFTIM.

5. Summary and concluding remarks

We have studied the phase transition behaviour of the random field Ising model in the
presence of a transverse field. This transverse field represents the (quantum) tunnelling
fluctuations in double-well systems representing the model order–disorder ferroelectric
systems, Jahn–Teller systems, etc [13]. The mean field phase diagram has been studied
in detail, in particular at zero temperature, where the transition is governed by the
fluctuations induced by the random field and quantum fluctuations due to the transverse
field. An effective hyperscaling relation has been derived for the zero-temperature (quantum)
transition in the RFTIM system. This scaling is based on the use of the hyperscaling relation
for the thermal phase transition in the equivalent classical system and the application of
the Suzuki–Trotter formalism to the original quantum Hamiltonian. Also the dynamical
exponent of the quantum model which appears in determining the correlation volume in
the quantum phase transition has been included in the hyperscaling relation. However,
these arguments are not sufficient to prove if the RFTIM has any phase transition (at any
nonvanishing tunnelling field0c) in one dimension. Also, as discussed earlier, the present
theoretical uncertainties in the classical RFIM indicate an eventual requirement of some
modification of these scaling results.

It has also been shown by a semiclassical procedure that the ferromagnetic transverse
Ising model with a random longitudinal field provides the universal critical behaviour of
the random (e.g. randomly diluted) Ising antiferromagnet in a uniform field having both
transverse and longitudinal components. This is shown by employing a sublattice decimation
on the random antiferromagnet in a general uniform field. Although the decimation
procedure is only demonstrated for a one-dimensional system, it can be generalized for
the higher dimensions. This mapping also indicates the possible application of the results
of the studies for RFTIM to random quantum (Ising) antiferromagnets.
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Appendix A. Effective single-site Hamiltonian for a long-range interacting RFTIM

To derive the effective single-site Hamiltonian we consider the Hamiltonian of a (long-range
ferromagnetic) RFIM in a transverse field

H = − J

N

∑
i 6=j

Sz
i S

z
j −

∑
i

hiS
z
i − 0

∑
i

Sx
i (A1)

where the random variable at each site satisfies a Gaussian distribution (10). The
configuration-averaged free energy of the system is given by

F = −kT logZ (A2)

wherek is the Boltzmann constant andZ is the partition function for a particular realization
of the random fields. Using a replica trick [4] we can write then-replicated free energy in
the form

F = −kT lim
n→0

1

n
(Zn − 1) (A3)

= − kT lim
n→0

(
1

n

[
Tr exp

(
− β

n∑
α=1

H0(α)

)

×P exp

( ∫ β

0
dτ

n∑
α=1

∑
ij

J

N
Sz

αi(τ )Sz
αj (τ ) +

∑
i

hiS
z
αi(τ )

)]
− 1

)
(A4)

whereα denotes theαth replica,P denotes the time ordering,H0(α) = −0
∑

i S
x
αi and the

Sz(τ )’s are operators in the interaction representation. We can now perform the configuration
averaging to obtain

= − kT lim
n→0

(
1

n

[
Tr exp

(
− β

n∑
α=1

H0(α)

)
×P exp

( ∫ β

0
dτ

n∑
α=1

∑
ij

J

N
Sz

αi(τ )Sz
αj (τ )

+12

2

∑
i

( n∑
α=1

∫ β

0
dτ Sz

αi(τ )

)2)]
− 1

)
. (A5)

A Hubbard–Stratonovitch transformation simplifies the term

exp

[ ∫ β

0
dτ

n∑
α

∑
ij

J

N
Sz

αi(τ )Sz
αj (τ )

]
= exp

[ ∫ β

0
dτ

n∑
α=1

∣∣∣∣
√

J

N

N∑
i=1

Sz
αi(τ )

∣∣∣∣2]
(A6)

(where the terms of order(1/N) are neglected), so that we obtain the configuration-averaged
n-replicated free energy

F = −kT lim
n→0

1

n

∫ ∞

−∞

n∏
α=1

dxα

(
N

2π

)1
2
(

Tr exp

(
Nβ

n∑
α=1

Sx
α

)

×P expN

(
−1

2
β

n∑
α=1

x2
α +

√
2J

n∑
α=1

xα

∫ β

0
Sz

α(τ )+ 12

2

( ∫ β

0
Sz

α(τ )

)2))
− 1

(A7)
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where thexα ’s are dummy variables. In theN → ∞ limit, one can readily obtain the
saddle point configuration-averaged free energy

F = −kT lim
n→0

1

n

[
− 1

2β

n∑
α=1

x2
α + log Tr exp(A)

]
(A8)

where

exp(A) = exp

(
β0

n∑
α=1

Sx
αP exp

(√
2J

n∑
α=1

xα

∫ β

0
Sz

α(τ ) + 12

2

( n∑
α=1

∫ β

0
dτ Sz

α(τ )

)2))
.

(A9)

The square term appearing in the above expression can be simplified using once again a
Hubbard–Stratonovitch transformation to obtain

exp(A) =
∫ ∞

−∞

ds

(2π)
1
2

exp

(
− s2

2

)
exp

(
β0

n∑
α=1

Sx
α

)
×P exp

(√
2J

n∑
α=1

xα

∫ β

0
Sz

α(τ ) dτ + s1

∫ β

0
dτ

n∑
α=1

Sz
α

)
(A10)

wheres is a dummy variable. Finally, one obtains the form of free energy (withx = mz
√

2J

andsδ = h) given by

F = −kT

[
− J (mz)2β +

∫ ∞

−∞

dh√
2π12

exp

(
− h2

212

)
log Tr exp(β0Sx)

×P exp

(
(2mzJ + h)

∫ β

0
Sz(τ )

)]
= − kT

[
− J (mz)2β +

∫ ∞

−∞
dh P (h) log Tr exp(β(0Sx + (2mzJ + h)Sz))

]
.

(A11)

We have thus reduced the many-body Hamiltonian (in theN → ∞ limit) to an effective
single-site problem, where the molecular field at each site is given by(2mzJ + h) whereh

is distributed with a probability distributionP(h).

Appendix B. Mapping of a random Ising antiferromagnet in a uniform longitudinal
and transverse field to the RFTIM

The equivalence between the transition in the RIAFTL system to that in the RFTIM system
is obtained by employing semiclassical decimation of the one sublattice of the RIAFTL
system, which neglects commutators between the spin operators. Here a partial trace is
done over sites of one sublattice, e.g. that in which the site labeli is odd. The original
(reduced) Hamiltonian

−βH =
∑

i

(−Ki,i+1S
z
i S

z
i+1 + hiS

z
i + 0Sx

i ) =
∑

i

Hi (B1)

is mapped into a new form

−βH ′ =
∑

i

(−K ′
2i,2i+2S

z
2iS

z
2i+2 + h′

2iS
z
2i + 0′Sx

i ) =
∑

i

H ′
2i . (B2)

The trace overS2i+1 produces the factors

b(Sz
2i , S

z
2i+2) = 2 cosh[(h2i+1 − K2i,2i+1S

z
2i − K2i+1,2i+2S

z
2i+2)

2 + 02]1/2. (B3)
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This can be written as

exp(A + BSz
2i + CSz

2i+2 + DSz
2iS

z
2i+2)

where matching of the expression for all four possible sets of values for(Sz
2i , S

z
2i+2) gives

A, B, C, D in terms of0, h2i+1, K2i,2i+1, ,K2i+1,2i+2. For example

B = 1

4
log

[
b(1, 1)b(1, −1)

b(−1, −1)b(−1, 1)

]
≡ B(K2i,2i+1, K2i+1,2i+2) = C(K2i+1,2i+2, K2i,2i+1) (B4)

D = 1

4
log

[
b(1, 1)b(−1, −1)

b(1, −1)b(−1, 1)

]
≡ D(K2i,2i+1, K2i+1,2i+2) (B5)

so that we arrive at the recursion relations (22), (23) and (24).
For h � K, one can evaluateB(K1, K2) (where K1 and K2 are two neighbouring

bonds), using the simplified relations

b(1, 1) = 2 cosh

[
�+ − h

3+
�+

]
b(1, −1) = 2 cosh

[
�− − h

3−
�−

]
b(−1, −1) = 2 cosh

[
�+ + h

3+
�+

]
b(−1, 1) = 2 cosh

[
�+ + h

3−
�−

]
where

�± = [32
± + 02]1/2 3± = K1 ± K2. (B6)

Hence

B(K1, K2) = 1

4
log

[
cosh(�+ − h3+/�+) cosh(�− − h3−/�−)

cosh(�+ + h3+/�+) cosh(�− + h3−/�−)

]
.

If we now use the relation (for smallh)

log

[
cosh(α + γ h)

cosh(α − γ h)

]
= 2γ h tanhα + · · ·

we get

B(K1, K2) = −h

2

[
3+
�+

tanh�+ + 3−
�−

tanh�−

]
+ O(h2) (B7)

etc.
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